Name ___

1) Given the basis
$$B = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$
 and $\vec{x}_S = \begin{bmatrix} 1\\2\\3 \end{bmatrix}_S$, find a formula for $[\vec{x}]_B$. (10 points)

2) Given the bases $B_1 = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 13 \end{bmatrix} \}$ and $B_2 = \{ \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$, find a formula for the change of basis matrix that converts vectors from basis B_1 into vectors from basis B_2 . (10 points)

 $[I]_{B_1}^{B_2} = \begin{bmatrix} 4 & 0 \\ 3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 \\ 1 & 13 \end{bmatrix}$

3) Find the determinant of the matrix below. (15 points)

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & -4 \\ 3 & 4 & 0 & 2 \end{bmatrix}$$

$$\begin{vmatrix} 1 & 2 & 0 & 3 \\ 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & -4 \\ 3 & 4 & 0 & 2 \end{vmatrix} = 1 \begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 3 & 4 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 4 & 2 \end{vmatrix} - 2 \begin{vmatrix} 1 & 5 \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} 1 & 3 \\ 3 & 4 \end{vmatrix}$$
$$= (6 - 20) - 2(2 - 15) + 3(4 - 9) = -14 + 26 - 15 = -3$$

4) Given the linear transformation $T: \mathbb{R}^2_S \to \mathbb{R}^2_S$ given by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_S \right) = \begin{bmatrix} 3x_2 \\ x_1 + x_2 \end{bmatrix}_S$ and the bases below, find a formula for $\left[T\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{B_1} \right) \right]_{B_2}$. (10 points) $B_1 = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \}$

$$B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$$
$$B_2 = \left\{ \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$

- 5) Answer the following questions. (3 points each)
 - A) Let *A* be a 3 × 3 matrix and assume that it has rank 2. How many solutions does $A\vec{x} = \vec{0}$ have?

 ∞

B) Let A be a 3×4 matrix and assume that the corresponding linear transformation T is not onto. What is the minimum dimension of the null space of A?

2

C) Let A be a 3×7 matrix. Assume that the dimension of the row space is 3. What is the dimension of the column space?

3

D) Consider a system of 5 equations in 3 variables. Assume there are infinitely many solutions. If *A* is the matrix representing this system, what are the possible values for the rank of *A*?

0, 1, or 2

E) Let A be a 6×6 matrix and T the corresponding linear transformation. If dim(ker(T)) = 2, what is the rank of A?

4

6) Find the null space of the matrix below. (10 points)

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \end{bmatrix}$$

 $x_3 \text{ is free}$ $x_2 = -4x_3$ $x_1 = -3x_3$

NS = span	({	-3 -4	})	
L.	$\left(\right)$	1)/	

7) Find the product below. (5 points)

٢1	2	0	0	ך0	г1	0	0	0	ך0	г1	0	0	0	ך0	г1	2	2	4	3
0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	2	2	3	4	5
0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1	2	3	4	5
0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	2	1	3	2
LO	0	0	0	1]	LO	0	0	0	2	LO	0	0	0	1	L ₆	5	2	7	9

Use the fact that they're elementary matrices!

$$\begin{bmatrix} 5 & 6 & 8 & 14 & 13 \\ 2 & 2 & 3 & 4 & 5 \\ 1 & 4 & 4 & 7 & 7 \\ 0 & 2 & 1 & 3 & 2 \\ 12 & 10 & 4 & 14 & 18 \end{bmatrix}$$

You may be interested in the information below for the questions on this page.

					Γ.	-	4	ר7
[1	4	0	5		1	0	$-\overline{3}$	3
0	0	0	0	\sim_R		4	1	2
L0	3	1	2		0	1	3	3
					LO	0	0	01

8) Are the vectors linearly dependent or linearly independent? Why? (5 points)

([1]		[4]		[0]		[5])
{	0	,	0	,	0	,	0	{
(0		3		1		2)

No, notice that when row reduced there are columns without pivots.

9) Can
$$\begin{bmatrix} 5\\0\\2 \end{bmatrix}$$
 be written as a unique linear combination of $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 4\\0\\3 \end{bmatrix}$, and $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$? Why or why not? (5 points)

No.

It can be written as a linear combination, but notice the free variable in the augmented matrix. It is not unique.

	/([1]		[4]		[0]		[5]))	
span		0	,	0	,	0	,	0	{	
,	(0		3		1		2)/	

11) Given the information below regarding the linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$, find the diagram that illustrates them as well as $T \circ S$. (10 points)

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1\\3x_2\\x_1+x_2\end{bmatrix} \quad S\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_1-x_2\\4x_1+x_3\end{bmatrix}$$

$$\mathbb{R}^3 \xrightarrow{\begin{bmatrix} 1 & -1 & 0 \\ 4 & 0 & 1 \end{bmatrix}} \mathbb{R}^2 \xrightarrow{\begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 1 & 1 \end{bmatrix}} \mathbb{R}^3$$